Exact Association Probability
for Data with Bias and
Features

JAMES P. FERRY

A crucial prerequisite to data fusion is data association: i.e.,
the specification of which data arise from the same source. The
Bayesian approach to association pioneered by Mori and Chong is
based on principled probability formulas, which thus provide re-
liable confidence estimates for association hypotheses, in contrast
to approaches that rely on costs which can only be heuristically
transformed into probabilities. This paper extends the Bayesian ap-
proach in several ways. It presents a general derivation of associa-
tion probability between any number of sensors for arbitrary data
types, then derives specific results for kinematic and non-kinematic
cases. The kinematic case includes bias and is novel in three ways.
First, it is a proper Bayesian approach to bias which integrates
over all bias hypotheses rather than selecting one. Second, it han-
dles bias on an arbitrary number of sensors. Third, the formula
is exact: previous treatments of even the unbiased case involve an
integral approximation which is not needed here. The treatment of
features allows for several complex phenomena, including feature
behavior which depends on object type, and noisy and/or missing
feature data. A rigorous verification procedure is used to demon-
strate that the implementation of these formulas produces correct

probabilities.
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1. INTRODUCTION

The data association problem arises whenever mul-
tiple sensors are trained on a common region containing
multiple objects, which, in turn produce multiple mea-
surements on each sensor. Having multiple views pro-
vides more information about the state of the objects in
the region, provided the sensor data can be fused cor-
rectly. In order to fuse the data, however, it is necessary
to know which measurements on different sensors arose
from the same object. This is the data association prob-
lem, and it is roughly forty years old [24, 25]. In many
applications, these “measurements” are not raw sensor
measurements, but the posterior state estimates given by
a single-sensor tracker such as a Kalman filter, and one
speaks of ‘“measurement-to-track” or ‘“track-to-track”
associations. Solving the association problem is neces-
sary in Multiple Hypothesis Tracking [23], and much ef-
fort has gone into the development of algorithms to find
the best association given track estimates with Gaussian
error covariances [4]. The key difference between raw
measurement data and track posteriors, however, is that
the former lack inter-sensor correlation (for given object
states). Such correlations are important in the track case,
however, particularly if the posterior distributions have
been influenced by previous inter-sensor data fusion.
Indeed, even the posteriors of single-sensor trackers are
correlated due to common process noise [3]. The scope
of this paper is limited to situations in which such inter-
sensor correlations are absent or have been compensated
for.

The association problem was originally formulated
in terms of costs with statistically motivated definitions
—one found or devised a credible cost function and
used it to seek low-cost associations. In 1990 Chong et
al. introduced a more rigorous framework for assess-
ing the quality of associations [7]. Mori and Chong ex-
tended this work in a series of papers in the early 2000s
[16, 17, 18, 19, 20]. For the important case of two sen-
sors with Gaussian kinematic data, they replaced the
heuristic framework of costs with a rigorous, Bayesian
reformulation of the association problem. In doing so,
they gave a meaningful definition of the probability of
an association, and argued that rather than seeking the
association with minimal cost, one should seek the MAP
association—i.e., the one with Maximal A posteriori
Probability. In practice, the MAP method looks similar
to the older method. The probabilities can be converted
to costs, and one ends up computing the same quantities
as before with one subtle difference: Mori and Chong
showed that the correct cost threshold is not constant,
but depends on the covariance matrices of the two mea-
surements involved. Hence it came to be known as an
adaptive threshold.

In 2002, Stone et al. generalized the work of Mori
and Chong to non-kinematic data with the XMAP (eX-
tended Maximal A posteriori Probability) method [27].
In this and later work [6, 9, 11], association probabil-
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ity formulas have been derived that take into account
continuous and non-continuous data types beyond the
purely kinematic, primarily for the case of two sensors.

This paper encompasses and extends the previous
XMAP work, beginning with a general derivation for as-
sociation probability in an abstract setting in Section 2.
Like [18], this derivation includes an arbitrary prior on
the number of objects and (in Appendix A) false alarms.
Its novel aspects include a dependence on systematic
errors (such as bias or covariance inflation) and a cor-
related prior on object state. In Section 3, this abstract
derivation is applied to cases comprising kinematic and
non-kinematic data types, and the association probabil-
ity formula is decomposed. The kinematic component
is dealt with in Section 4. The key contribution of this
section is its treatment of bias, which improves on pre-
vious work in three ways: (1) rather than removing “the
bias” (i.e., some particular bias hypothesis), it performs
the proper Bayesian operation of integrating over all
bias hypotheses; (2) it holds for an arbitrary number
of sensors; and (3) it is exact—a certain integral ap-
proximation typically made even in the non-bias case is
circumvented here. Section 5 demonstrates how to han-
dle non-kinematic data in fairly complex cases, such as
when the feature distributions and detection probabili-
ties vary with object type. It also shows how to deal with
missing data, and provides a robust and general method
for handling noisy features. Finally, Section 6 works
through an example in detail and demonstrates that the
meaningful, exact probabilities produced by XMAP can
be used to verify the formulas and their implementation
to high precision.

2. ASSOCIATION PROBABILITY DERIVATION

This section derives a general formula for associ-
ation probability in an abstract space. Working in an
abstract space allows us to handle arbitrary types of
measurement data in a consistent manner, whether it
be traditional kinematic data, or, say, the messy output
of a feature extractor which combines real-valued data
with object classification calls and status flags. Thus,
the bulk of this paper may be viewed as applying the
general Theorem 2.4 below to special cases. A technical
detail to bear in mind with this abstract treatment is that
integrating over an abstract space requires one to specify
a measure over the space. There will be no need, in this
paper, to use measures other than Lebesgue measure for
continuous data and counting measure for discrete data
(which converts integrals to sums), so we will assume
that the measure is clear from context.

We begin with a simple result for the probability
density of getting a specific array of measurements on
a single sensor s given the states of the objects that
produced them. This result depends on the measure-
ment likelihood function L*(z | x, 3), which specifies the
probability density of the measurement z arising given
that the object which produced it was detected and was
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in state x, and that a systematic error 3 is acting on all
measurements on sensor s. It depends also on the de-
tection probability F3(x) for an object in state x, and we
use the notation Qf(x) =1 — F3(x) to denote the non-
detection probability. This systematic error 3 may rep-
resent any measurement error process that acts on all
measurements on a sensor at once, such as a transla-
tional bias or covariance inflation.

Let z° = (zf)!_, denote an array of the n* measure-
ments on sensor s at some fixed time, and x = (xj);?:1
denote the array of states of the n objects in scene. We
let J = {1,2,...,n} denote the set of all objects, and J}
denote the subset of objects detected on sensor s. We
use the mapping a° : J§ — {1,2,...,n"} to specify which
object produced which measurement. We assume there
are no false alarms (the false-alarm case is addressed in
Appendix A), that there are no split or merged measure-
ments, and that all permutations of measurement labels
are equally likely. With these assumptions, we obtain
the following preliminary result.

LEMMA 2.1 The probability density of the measurement
array 7' arising according to the mapping a® given the
object state array x and the systematic error 3* is

1
Pr(z’,a’ | %.0%) = — [[ AL g | 3,28)
" jers

X H O (x)).

JEINS

2.1)

PROOF Given the object state array X, the probability
Pr(J5 | x) of the subset of detected objects being pre-
cisely Jp is the product of Rj(x;) over j€Jj times
the product of Qf(x;) over jeJ \J5. Given JJ (and
x), each of the possible n*! mappings a* are equally
likely, so Pr(a’,J3 | x), which is identical to Pr(a’ | x)
because a* determines Jj, can be expressed Pr(a’ | x) =
Pr(a® | J5.x)Pr(J§ | x) = Pr(J5 | x)/n*!. The probability
density of the measurement array z* given a°, X, and
(* is the product of the individual likelihood functions
Lz} \xj,ﬂs), where i =a’(j), over all jeJj. Equa-
tion (2.1) now follows from Pr(z*,a’|x,[3*) = Pr(z* |
a*,x, 3*) Pr(a’ | x).

It is straightforward to generalize Lemma 2.1 from
a single sensor to a set of sensors S. We let z = (z°),
denote the array of all individual measurement arrays z°,
and 8 = (8°),.y denote the array of all systematic errors.
We assume that the measurement process is independent
between sensors, bearing in mind that this limits the
applicability to tracking unless the inter-sensor depen-
dence can be compensated for. With multiple sensors
it is convenient to express the information contained in
the mappings {a'}, ¢ in terms of
a(j) = {(s,0) :a’(j) = i}

and  a(j) ={s:je 3}

(2.2)
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The function a gives the set of sensors which detect
each object j, whereas a gives the measurement indices
of each detection too. With this notation, we have the
following corollary of Lemma 2.1.

COROLLARY 2.2  The probability density of the measure-
ment arrays Z arising according to the function a given
the object state array X and the systematic errors 3 is

Pr(z,a|x,8) = (H %) H

ses jes

X ( 1T BeprEixm ] Q‘{')(x,)>.
(s,)€a(j)

s¢atj)
(2.3)

PROOF The assumption of independence between the
measurement processes implies that Pr(z,a | x,3) may
be obtained as the product of (2.1) over s € S. The result
(2.3) is merely a rearrangement of this.

We now seek to eliminate the dependence on the
state array x. To do so, we need an expression for the
prior distribution of the state. The expression introduced
below is novel, and requires some discussion of (a) the
shortcomings of the usual approach, (b) how the prob-
lem should be solved in principle, and (c) the compro-
mise used here. Although the derivation in this section
applies to an arbitrary state space, the problematic case
is the traditional, kinematic one, so we shall think of x
as a kinematic quantity for this discussion.

The usual assumption about the prior distribution of
x when bias is absent is that its components x; are i.i.d.,
each distributed according to some known distribution
p°. The distribution p°(x) of a single object state x is
then taken to be uniform over some finite region of
space X° [17]. An appropriate volume V for X° may be
estimated from the data, and p°(x) modeled as / o (X)/V,
where I0(x) is the indicator function for the region X 0
The precise location of the region X° does not matter
because p°(x) is later approximated by the constant 1/V
in the integrals where it appears. This approximation
is valid because the measurement errors are typically
much smaller than X°, and this formulation, which leads
to the adaptive threshold works well in practice [26].

Bias errors may be larger than X9 however, so the
approximation p°(x) ~ 1/V fails in the bias case. Main-
taining p°(x) as Iy (x)/V yields intractable integrals, so
it is natural to consider a Gaussian model for p°(x). In
this case, however, the precise location of the Gaussian’s
peak in state space must be estimated from the measure-
ments, while correcting for the (unknown) biases, and
the resulting formulation becomes messy and ad hoc.
Indeed, it must be ad hoc because it involves estimating
the location of the Gaussian’s peak from the data—a
clear violation of Bayesian methodology.

One is led to such violations because of a faulty ini-
tial assumption: that the prior distribution of x is well

modeled as the product of p°(x ;) for some known distri-

bution p°. The characteristic size V and nominal center
& of this prior distribution are usually both unknown.
However, it is reasonable to model the states x; as being
conditionally i.i.d. given V and &, and then to specify
priors on V and £. This leads to additional integrals over
V and £. However, one may argue, for example, that the
weight in the integrand of the integral over V is con-
centrated in the region of V-space that is reinforced by
the measurement data, so evaluating the integrand at a
single point V* (estimated from the data) amounts to a
reasonable approximation of the integral. This provides
a Bayesian justification for an otherwise ad hoc proce-
dure. However, in the bias case there is no single value
of € where the integrand is concentrated: this center lo-
cation depends on the unknown biases (3°. Rather than
replace £ by this function of the biases, it is fairly easy
to retain it and perform the integrals exactly. Doing the
same for V, however, (which, in the Gaussian case is ac-
tually an entire covariance matrix) is too difficult, so we
will estimate it from the data, relying on the argument
above for justification.

We therefore assume the following prior distribution
on the state array x (which we now resume treating as
abstract rather than kinematic):

PPx |9 =[x 1.

jer

(2.4)

Multiplying (2.3) by p°(x | n,£) and integrating over x
results in a product of integrals over x; for each object
Jj € J. These have the form

Pl = [1°619 [ BOLG x5

(s,)ea

x [[ob(x)dx
s¢a

for o = a(j). For the special case of o containing only
the single measurement (s,i) we will use the notation
Pi(zf | B,¢) in lieu of P(z|B,§). Let J, denote the
subset of objects in J detected on some sensor, and
np = |Jp| be the number of detected objects. For j ¢ Jp,
(2.5) takes a particularly simple form:

a= [P lo]]ehwas

seS

(2.5)

(2.6)

Here we are imposing the condition that ¢ is indepen-
dent of £. This will happen automatically later when
we stipulate in (3.18) that F3(x) be independent of the
kinematic component of x. This stipulation is not realis-
tic: A3(x) can vary greatly with aspect angle and range.
However, the case in which A3(x) has kinematic depen-
dence makes the calculations in Section 4 too compli-
cated, though it would be a suitable topic for future
work.

COROLLARY 2.3  The probability density of the measure-
ment arrays Z arising according to the function a given
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the number of objects n, the systematic errors 3, and the
center & of the prior region of state space is

Pr(z.a| m,B.6) = — [] POz| B.9). 27)

ns!
HSGS j€lp

PROOF This is obtained by multiplying (2.3) by (2.4)
and integrating over X.

The function a defined in (2.2) maps each object to
the set of measurements it produces. An association [a]
is defined to be the collection of these sets, [a] = {a(j) :
j €Jp}. There are exactly n!/(n —np)! functions o' for
which [d'] = [a], all of which are equally probable, so
the association probability Pr(z,[a] | n,3,€) is n!/(n —
np)! times Pr(z,a|n,B3,£). We may now eliminate the
dependence on the total number of objects n. The prior
probability for the number of objects being » is denoted
p°(n), so

0
Pr(z.[a] | .6 = ") [T Poz| B.6). (28)
HSGS" ’ a€lal
where
. n! n—np
7%w=zww535ﬂ X))

n=np

We denote the prior on the systematic errors P%(3),
and the prior on the center, P2(¢). When integrating
(2.8), the key quantity to compute is

rala)= [ [ ] Pal.oP @rapd.

a€lal

(2.10)

Finally, we introduce the following ratios of 1° and F
to their values for the null association a,, which assigns
each of the n; measurements in z to a distinct object:

_ ) _ F@lah
s S TATA)Y
(2.11)

THEOREM 2.4 The probability of the association [a]
given the measurements 7 is

Pr([a] | z) = Pr([ay] | 2)g([a)G (z,[a]). (2.12)

PROOF From (2.8) we observe that joint probabil-
ity density Pr(z,[a]) is F(z,[a]) times vo(nD) divided
by the product of the n®!. The conditional probability
Pr([a] | z) of an association given the measurement data
is Pr(z,[a])/ Pr(z). Dividing Pr([«] | z) by the normaliza-
tion constant Pr([a,] | z) yields (2.12).

The key to computing the association probability is
evaluating F(z,[a]) (or its normalization G(z, [a])). This
is the topic of Sections 3—5. The combinatorial factor
g([a]) encapsulates the effect of the prior distribution
of the number of objects. Formulas for it are given in
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Appendix B. Although the derivation in this section as-
sumed there are no false alarms, Appendix A demon-
strates that the effect of false alarms may be included by
modifying the factor g([a])—no change to the definition
of G(z,[a]) is necessary.

3. SIMPLIFICATION FOR SPECIAL CASES

Theorem 2.4 gives a general formula for association
probability, but requires the evaluation of the integrals
in (2.5) and (2.10). With complicated data types, eval-
uating these integrals is not as simple as it may appear.
Therefore we demonstrate how the problem simplifies
in various special cases. Section 3.1 gives a formula
much simpler than (2.12) which holds when there is
no dependence on 3 or &. Section 3.1.1 specializes this
further to the two-sensor, kinematic case, connecting
the general XMAP formulation presented here to the
original MAP formulation of Mori and Chong [16, 17].
Finally, Section 3.2 demonstrates how to decompose the
problem into kinematic and non-kinematic components
when both data types are present. The kinematic com-
ponent is then evaluated explicitly in Section 4, and the
non-kinematic component in Section 5.

3.1. Simplification in the Absence of Systematic Error

When the systematic errors 3 and the center £ are
known, we may assume each to be zero (by suitably
transforming the data z): i.e., P°(83) = §(8), and PY(¢) =
0(¢). Letting P*(z) and P*(z}) denote P%(z|0,0) and
P*(z} | 0,0), respectively, we define

P(z)
H(s,i)éa PS(Z:'S) |

which is the ratio of the probability density of the
measurements in « arising from a single object to the
probability density that each arises from a different
object (aside from a factor which accounts for the
different number of detected objects in the two cases—
this is embedded in g([a])).

THEOREM 3.1 When the systematic errors (3 and the
center £ are known, the probability of the association [a]
given the measurements Z is

Pr(la] | 2) = Pr(la,] | )g(a) [ R* (@), (3.2)

a€lalt

R%(z) = 3.1

where [a]* denotes the subset of those o € [a] with at
least two measurements.

PROOF Because R%(z) = 1 when |a| = 1, the product
over a € [a]™ in (3.2) may be extended to « € [a]. This
product equals F(z,[a])/F(z,[a,]) when we set PO(3) =
6(B) and PO(¢) = 6(¢) in (2.10).

3.1.1. Two-sensor kinematic case
To recover the original MAP result [16, 17], we be-
gin with Theorem 3.1 and make four further simplify-
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ing assumptions: first, that p°(n) is Poisson distributed;
second, that there are only two sensors; third, that the
detection probabilities on each sensor are constant; and
fourth, that the data is purely kinematic, with Gaussian
measurement error distributions. The two-sensor kine-
matic case without bias is important because it admits a
computationally efficient solution. One first constructs
a cost matrix whose entries c;; are the Mahalanobis dis-
tances between measurement i on sensor 1 and measure-
ment j on sensor 2. Then a cost threshold is subtracted
from each ¢; i Finally, one finds the association with
minimal total cost using, for example, the JVC algo-
rithm [8, 13], and, if desired, iterates this process using
Murty’s algorithm [21] to get the k best associations.
(When there are more than two sensors, however, find-
ing the association with least cost is known to be NP-
hard. Approximate methods have been employed based
on Lagrangian relaxation [22] or on stitching together
solutions to pairwise problems. These approaches are
compared in [2].)

The effect of letting p°(n) be Poisson distributed is
discussed in Appendix B. It allows us to replace (3.2)
with the purely multiplicative form (B.4). Specializing
to two sensors simplifies matters further because in this
case every « € [a]* has the form a = {(1,i),(2,/)}. We
may re-write this more compactly as a = (i, j). Thus the
two-sensor version of (B.4) may be written

Pr(la] |z) =Pr([ap] |2) [] R;@. (33)
@i.))€lal*
where
~ P2z}, 23
(2) = —— T (3.4)
T PIGHPAD)

The functions P* and P2 are special cases of (2.5), with
(B and ¢ eliminated, £ set to a constant, and factors of
v in (B.5) included:

Pep =m0y [ore e
3.5)

P(z},2) = vRy B / PPOL (g} | )L | x)dx.
(3.6)

(To incorporate false alarms, replace the factor vB;Q;
in (3.5) with vBQ3 ™ + 148, where vj, is the expected
number of false alarms on sensor s: see (B.18).)

The integrals in (3.5) and (3.6) are simple to evaluate
when L® has a Gaussian distribution. We use the notation

1
P (—E(x 'V (x - u))

(3.7)

for a Gaussian in x with mean p and covariance matrix
V. Specializing to the standard kinematic case, we let
the value z; of measurement i on sensor s have the form

N, V) =

ex
|27V

= (y},V;*), where y; the state estimate, and V* is the
error estimate on y;. We then stipulate that

L'z} | x) = NG x, VOB, (V). (3.8)

Essentially this means that y; has a Gaussian distribution
centered at the true state x, with covariance matrix given
by V.*. There is an additional complication, however: the
estimated covariance matrix V;* is part of the data, so its
distribution must be modeled as well. The simplest as-
sumption is that it is independent of x (and of y{). In
this case the precise form of the distribution £, does not
matter: it drops out of the calculation. (More sophis-
ticated treatments are certainly possible: for example,
there may be systematic over- or under-reporting of co-
variance, or the size of the covariance matrix itself may
yield object-type information, in which case F, would
be modeled to have a dependence on the object type
component of the state.)
Following [7], we let the prior distribution on an
object’s state x be constant over some region X°:
pP(x) =

—_To(x), (3.9)

Vo 1(x0)

where Iy0(x) is equal to 1 for x € X, and 0 otherwise.
Given the above assumptions, (3.4) may be written

Vol(X?)
vq
fXON(x ijo U)dx
* T NGy VDX [ N (532, VA

R () = NGy Vi + VD)

(3.10)
where ¢ = QL03, and p;; ; and W; are given by
=y +V (V.1+Vj2)f (yjfyi) and Gi1)
W, =V vV

Assuming the Gaussians in the integrals in (3.10) have
most of their weight within X°, each integral is approx-
imately 1. This yields the following cost of associating
i and j:

= —2logR;;(z)
=G =y VO D — Ay,
(3.12)
where
_ 0 1 2
A;; = 2log Vol(X™) — log 27 (V' + |4 )| —2log(vq).
(3.13)

The cost ¢;; is thus seen to be the Mahalanobis dis-
tance (y} —yH) (V' + V)" '(y! — y7) between the mea-
surement pair (i, j) minus Mori and Chong’s adaptive
threshold Aij [16, 17, 18]. Traditionally, a variety of
methods had been used to set this threshold [4, 5].
Although the main historical significance of Mori and

Chong’s work is the introduction of a rigorous Bayesian

EXACT ASSOCIATION PROBABILITY FOR DATA WITH BIAS AND FEATURES 45



approach to association, the more immediate impact
was the introduction of a threshold A;; which has been
shown to be superior to the previous, fixed thresholds
[26].

There is a minor flaw with (3.13), however: it fails
when some V;* are large relative to the region X° because
this violates the assumption that allowed the integrals
in (3.10) to be approximated as 1. Such measurements
must be preprocessed out as unassociatable when using
(3.13). Additional, non-kinematic data may render such
measurements associatable, however, so it is preferable
to modify (3.13) to be robust to any input V*. A com-
plicated method for doing this is given in [9], but here a
much simpler method is given. When the covariance of a
Gaussian being integrated is large compared to X, the
integral may be approximated as the Gaussian’s peak
value times Vol(X®). This leads to the following robust
modification of (3.13), which has the heuristic interpre-
tation of limiting the uncertainty of an object’s location
to X° even if V* — oo:

Ay

_ 0 1 2
;= max(2log Vol(X ) —log |27 (V;" + V; )[,0)

—2log(vg). (3.14)

To use the adaptive threshold (3.14) one needs val-
ues for ¢, v, and Vol(X?). Section 2 notes that when
such parameters are unknown, the proper Bayesian pro-
cedure is to give them a prior distribution and inte-
grate them out of the problem. In practice, however,
setting values of A3 that are even approximately cor-
rect produces better results than those obtained using
the traditional, fixed threshold [26]. These values are
used to compute g = (1 —PS (1 — PDZ) and, using (B.6),
v=n'"+n*/(B+B3).

It remains to estimate Vol(X?). Following [9], we
do this by first estimating the covariance of the location
data y; for all measurements. In the absence of sensor

bias, the unbiased covariance estimator 1% may be com-
puted as follows. Collect all n; measurement positions
y; on all sensors into a single array with elements y; for
i=1,2,...,n;. Then

1 < ) .
— D003

i=1

. L1 &
V= where y=— Vi
(3.15)

In Section 4 we will consider the case with r sensors
and bias. In this case, V is given by

ny

A 1 n A o
V= ne—r Zz(yis -0 =" where
T seS i=1
n' (3.16)
P | N
D
i=1

To compute the volume of X0 from ‘7, we assume
that X° is a Cartesian product of ellipsoidal regions
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with covariance matrix V. If X° is a product of m-
dimensional ellipsoids (e.g., x could be 6-dimensional,
with m = 3 being the physical dimension of position-
and of velocity-space), then

Vol(X°) = 4/ |2ﬂ0\7\ where 0 =(1+ m/2)(m/2)!"2/’”.
(3.17)

The values of 6 for m=1, 2, and 3 are 6/7 ~ 1.91,
2, and (5/3)y/6/7 ~2.07, respectively. Because these
values are so close, setting § = 2 for all problems is an
acceptable approximation.

This volume estimate is not ideal. It is sensitive to
outliers and to measurements being close to co-planar.
Fortunately, its effect is limited to the threshold—i.e.,
the decision of whether to associate two measurements
at all. Some authors dispense with the volume estima-
tion entirely, using a diffuse spatial prior [14, 15], which
is perfectly valid, but limits the power of the resulting
method to hypothesis tests between associations repre-
senting the same number of detected objects.

3.2. Splitting into Components

When z comprises various data types, with some de-
gree of independence in how each type is generated,
(2.12) can be split into components for each data type.
Here we will make a major simplification by splitting
the kinematic data from any non-kinematic data types
present. The kinematic data retain the complications due
to B and &, and Section 4 demonstrates how to handle
this. The non-kinematic data is modeled to be without
the complications due to 3 and &: therefore the non-
kinematic component of association probability simpli-
fies into a product over « € [a]*, as in Theorem 3.1.
Examples of how to model various non-kinematic data
types are given in Section 5.

To split the problem into components, we split both
the state x and each measurement z; into a kinematic
component (K) and another component (J, for all non-
kinematic variables jointly): let x = (x*,x’) and z{ =
(zX5,z/%). We make the following assumptions about
how the prior distribution, detection probability, and
measurement likelihood functions split:

B3(x) = By (x), (3.18)

Px| &) =pRouK —9p’°x’)  and
(3.19)

L@z | x,8°) = LGRS |15, )L () | ).
(3.20)

Equation (3.18) stipulates that the detection probability
is independent of the kinematic state. As discussed in
Section 2, this is an unfortunate but necessary oversim-
plification. It is allowed to depend on non-kinematic
variables, however: for example, it is plausible that one
could have a reasonable model of detection probability
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as a function of object type (cf. Section 5.1). Equations
(3.19) and (3.20) stipulate that the complications due to
the center £ of the object region and the systematic error
(° are solely kinematic phenomena. The assumptions
(3.18)—(3.20) permit a relatively simple treatment of the
non-kinematic variables, while addressing the effects of
kinematic bias.
The definition of ¢ in (2.6) may be simplified to

0= [T[oe"ar.

seS

(3.21)

because for any ¢ the integral of pX°(xK —¢) over all
xK is 1. Note that g is independent of &, as required
in the text following (2.6). The key probability density
P%(z| B,¢) may be split as follows:

P*(z]| B,¢) = PX(z" | B,o )P/ (),

using (2.5) to give us these formulas for the kinematic
and non-kinematic components of P:

(3.22)

PK&(ZK |ﬂ’£) — /pKO(.XK 76) H LKS(ZI'KS |XK,ﬁs)d)CK and

(s,)ea
(3.23)
Ple@) = / P T B ehe @ 1)
(s,)ea
x HQ{;(xf )dx' . (3.24)

s¢a

THEOREM 3.2  Given the assumptions (3.18)—(3.20), the
probability of the association [a] given the measurements
Zis

Pr([a] | 2) = Pr([ay] | 2)g([aDG" (2", [aDG (2, [al),

(3.25)
with
FX(ZX,[a))
K/, K _
G (28, lal) = T TATA (3.26)
where
Feaftan = [ [ T] PRea | 8.or @redsd.
a€lal
(3.27)
and
G'@ . lah = ] R'*@), (3.28)
aclal*t
where
Ja ()
Ro@) = — L) (3.29)

s(-Js)"
H(.v,i)EQ PJY(Zi S)

PROOF  This result follows directly from the definitions
of the quantities involved.

4. THE KINEMATIC COMPONENT

In this section we derive an exact formula for the
kinematic component GX(zX,[a]) of the association

probability in the case of an arbitrary number of sensors
with bias effects included. We will drop the superscript
K throughout this section. Equation (3.26) shows that
evaluating G(z,[a]) involves integrating over the sen-
sor biases 3. This differs from the more typical ap-
proaches which identify and remove a bias hypothe-
sis (either a distinct hypothesis for each association, or,
more crudely, one hypothesis for all associations). Such
approaches can fail even in quite simple scenarios, such
as the one discussed in [10].

To obtain a formula for the kinematic component
G(z,[a)) of the association probability, we must evaluate
the integrals in (3.23) and (3.27). To do so, we need
appropriate models for the quantities which appear in
them. For the bias prior we assume

PB) = [[P™ 8 = [[ VB 5. BY).

seS seS

4.1)

Here 3 is the mean bias on sensor s, and B° is the
bias covariance matrix. In practice, one would typically
set (B) to zero because one could simply add it to
each measurement on sensor s in a pre-processing step.
The bias covariance matrix B* should be part of the
performance specifications for sensor s. If it is not,
however, one may set B to be diffuse. We let the prior
on ¢ be diffuse:

PY(&) = N (&€, Vo)

The irrelevant value of £, will be retained until the step
that takes Vz — oo eliminates it.

We let the measurement likelihood function be
Gaussian, writing the measurement as z} = (y,V}*), as
in Section 3.1.1. Generalizing (3.8) to include bias, we
have

(4.2)

where Vz — oo.

L' | x,8) = NOjsx = 8%V,

Here the factor F,(V;*) which appeared in (3.8) has been
set to 1 (because the value does not matter, and it would,
in fact, be 1 in a suitably chosen measure space). Finally,
we assume that the prior distribution on x is Gaussian
with mean ¢ and known variance Vj,,

Pl(x— &) = N(x;€, V),

for the reasons discussed before Equation (2.4). Equa-
tion (3.16) may be used to produce a value for Vj in
practice.

(4.3)

“4.4)

LEMMA 4.1
P@|B.6) = /AW INE 1. Vo) [T NOT+ 801,00,

(s,))ea

4.5
where “3)

W= [V + > ! and

(s,)Ea

(4.6)
o =W, [V '6+ D )05 + )

(s,0)ea
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PROOF With (4.1)—(4.4), the integrand in (3.23) be-
comes a product of Gaussians, which may be integrated
using the standard formula (D.3).

Substituting (4.5) into (3.27) produces the following
key integral to evaluate:

F(@a,la)) = (H W)//

a€lal

X/H

a€la]

x [ [V(8% 85 BON (&0 Vo )d ' d 2 - d B de.

ses

<N(E,ua’Vo) H NG} + 5%#0,‘{“))

(s,)Ea

4.7)

Evaluating (4.7) yields the kinematic component
G(z,[a]) of the association probability Pr([a]|z) in
(3.25). Two formulas for G(z,[a]) will be given. First,
Theorem 4.2 provides a formula based on the direct
evaluation of (4.7). Theorem 4.3 then gives a more com-
putationally efficient formula achieved by applying cer-
tain transformations to the first result.

THEOREM 4.2
1
G(z,[a]) = Cexp (—5 (/@-([a]) + Z ’%)) )
a€lal
4.8)

where C is chosen so that G(z,[ay]) = 1, and the costs
k([a]) and K, are defined by

#([a]) = log|U/—b"U"'b,  and

4.9)
K, = log|VyW, | —m!W 'm,. (4.10)

The matrix U and vector b have the following block
structure:

Ul,l Ul,2 o Ul,r Ul,(/) 1

U Uy Uy, Uy 2
U= and b=

Uy U, = U, U, b,

Ust  Uns Uor  Uno by

4.11)

The entries in U are matrices defined as follows. For
51,8, €S,

Uy sy = 05U = D> IRV WV,

51,52 $152
a€lal
(4.12)
Uyo == 2 1V WY
a€lal ‘
(4.13)
U, == D 12V "WV,
a€lal ‘
Upo =mp¥ ' = D Vo "WV (4.14)

a€lal
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where I =1 if s € a (and i}, denotes the (unique) i for
which (s,i) € a in this case), and I{ =0 when s ¢ o.
Similarly, for s € S, the entries in b are vectors defined
by

by=BY"'8— > LVH L —m,)

a€lal

by =V, Z m,.

a€lal

and

(4.16)

The components of U and b depend on the following
quantities:
-1

Wo= Vo '+ 200,
(s,)Ea
(4.17)
my=W, » (V)'y}  and
(s,0)Ea
U =B)"+> (v (4.18)

i=1

PROOF Equation (4.7) is more complicated than it ap-
pears: the notation i, defined in (4.6), conceals a de-
pendence on each of the integration variables in many
of the Gaussian factors. Nevertheless, (4.7) is just an in-
tegral of products of Gaussians, where the arguments of
the Gaussians are linear combinations of the integration
variables. Equation (D.10) provides a formula for inte-
grals of this form. To use this formula, we first must ex-
plicitly cast (4.7) in the form of (D.4). The Gaussians in
(4.7) are of four types: type 1 is N'(§; u,,,V,), indexed by
a € [al; type 2 is N(y; + 3%, Vi¥), indexed by (s,i) € a
and o € [a]; type 3 is N(3*;3),B*), indexed by s € S,
and type 4 is the single Gaussian N (§;&,,Vz). The inte-
gration variables in (4.7) are of two types: type a is 3,
indexed by s, € S; and type b is the single variable &.
Thus, there are eight cases for the quantity A;; in (D.4).
In case la, for example, A, ; is the coefficient of 5! in

the exponent of NV'(&; 11, Vp), ie., A, = —ISW, (Vi)™
The quantity m; in (D.4) is simpler: there are onlyﬂ four
cases to consider. For example, in case 2, m; ) is the
constant term in the exponent of N'(y; + 3%; 4, V), i.e.,
M, 0 =M, — ;. After A;; and m; have been expressed
explicitly for each case, one may use (D.5)-(D.7) to
obtain formulas for for U, b, and c, letting V= — oo in
each. The results for U and b are given in (4.11)—(4.16).
The expression for ¢ simplifies to

n’
c==Y mW, m, +> N D'V Y
a€lal ses i=1

+ (B (B 5.

seS

(4.19)

Invoking (D.10) to evaluate (4.7) now yields the result
(4.8).
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The need to invert the (r + 1) x (r + 1) block matrix
U may seem rather excessive, and indeed it is. The next
theorem reduces this requirement to one of inverting an
(r — 1) x (r —1) block matrix. Thus in the two-sensor
case there is no need to form oversize matrices at all.
Another problem with inverting U is that it is singular
in the important case of all the bias prior covariances
B* being diffuse. Although this can be dealt with easily
as a special case (by deleting the final row and column
blocks of U and the final block of b), the formula is
ill-conditioned for large B°. The next theorem provides
a well conditioned formula.

THEOREM 4.3 If the measurements 7. have been pre-
processed so that 3 =0 for all s € S, then the definition
of k([a)]) in (4.9) may be replaced with

(b"TW* 1b*

w(la)) = log(IW* | |H|) — +1TH ' h),

(4.20)

where the quantities involved are defined as follows. First,

W' =U; +D°, 4.21)
where D* encapsulates the dependence on the bias prior
information:

T =D)L with

ss’

ss’ 6ss’(B ) ! (Bs)ilDil(BS,)ih

D=> (B)".

ses

(4.22)

The other quantities are

GHIGTrl

ss’ s /s,s' =

GH 'hy_!

fJ}‘F = (F, and
N (4.23)
b™ = (g, —

s=1°

which are defined in terms of

Fvs’ = 6ss’ Z(Vls) !
i=1

Z ! = DLV g =y,

a€la a€lal

= LIEEHTWW)T, (4.24)

a€lal

(4.25)

and

H =npV — ZW

a€lal

h—Zm

a€lal

(4.26)

PROOF Equation (4.20) is based on two reductions.
The first eliminates the @ (or £) component from the
block matrix U. The second transforms the coordinate
system of the r absolute biases to that of the r—1
relative biases and the sum of the biases, then eliminates
the sum-of-biases component as well.

We begin the simplification with the following block
decompositions of U and b into their (r-dimensional) 3

part and their (1-dimensional) & part:

U, +B' U b
u=|( °_ 0 and b:( >
Ug UO,(A bm

4.27)

where B denotes the r x r block diagonal matrix of
bias covariance matrices B*. From (4.12)—(4. 16) we find
that U, = —Uyl, U, =1"0,1, and b, = —1"b, where
1 denotes the r x 1 block matrix of 1dent1ty matrices.
We may now eliminate the £ component by applying
(D.19) with the @ component in the role of the integrated
variable I:

b U b = b U, o by +bTU'D and  [U] = [U,,||U"].

(4.28)

In these equations, U* and b* are given by (D.14) and
(D.15). To keep the bias prior information separated out,

we write U* = Uj + B~!, with

Uy =0p- 0000 and B =b— 0,0 by

(4.29)
For the second reduction, we simplify the expres-
sions b*7U*"!'b* and |U*| in (4.28). To do this, we
transform the problem from the coordinates of the
bias vector 3 to those of a vector C8 comprising the
r — 1 relative biases 3° — 3", and the sum of the biases
B + 3% +---+ 3. The r x r block matrix C which ac-
complishes this, and its inverse, are

I -1 1/ —117 1
C= and c'== ,
17 1 r -17 I

(4.30)

is the (r — 1) x (r — 1) block identity matrix,
is the (r — 1) x 1 block matrix of identity ma-

where I_
and 1_

trices. To simplify b*7U*"!b* and |I~J*\, we work in-
stead with the transformed quantities W = C-7U*C™!
and d = CTb*, breaking them into the same blocks as

C:
W—(W Wf) d—(d) (4.31)
AWl ow, )] \o /) '

rr

After some manipulation, we find

b 70U b =d"W'd=d"W~'d  and

(4.32)
U] = [CPW| = [CPW,,| W], (4.33)

where (D.19) gives W* = W_ — W W_'W’. The orig-
inal U and b quantities may now be written in terms of
much simpler quantities:

b'U ' =d"W'd_+b,U,,'b, and
(4.34)

Ul = [WZ[ [Tyl (4.35)
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The result follows directly. The value of x([a]) in (4.20)
differs from that in (4.9) by log|D|—2log|V,|, but this
can be absorbed into the normalizing constant C.

The expression (4.22) simplifies in certain special
cases. When all the bias covariances B® are diffuse,
D* =0, and in the two-sensor case, D* = (B! + B2)~L.

5. NON-KINEMATIC COMPONENTS

Equation (3.29) gives a simple formula for R/*(z/),
the contribution to association probability due to all
non-kinematic data. (We will henceforth drop the super-
script J.) Whereas the results of Section 4 are theorems
that can be used “off-the-shelf,” the category of non-
kinematic data is too diverse to allow results that are
this explicit yet broadly applicable. The explicit eval-
uation of R“(z) using (3.29) depends on the statistical
characteristics of the data, so one must be prepared to
derive an appropriate formula for R*(z) for one’s partic-
ular problem. In this section we will present examples
for various illustrative cases. These cases cover a range
of possible types of non-kinematic data. They may be
used directly for certain applications, modified for oth-
ers, or referred to for guidance in developing appropri-
ate formulas for applications further afield. Section 5.1
discusses how to handle object classification informa-
tion in conjunction with feature data which may depend
on object type. Sections 5.2 and 5.3 provide general
methods for handling noisy and missing data, respec-
tively.

5.1.  Object-Type-Dependent Features

We will use the term “object type” to refer to a
specific kind of feature: a discrete one, representing
a finite number of classes to which the object could
belong. It is typically measured by a classifier. The
possible classification calls ¢ are often the same as
the possible object types ¢, but for the purposes of
data association there is no requirement that the two
be related. The quality of a classifier is determined
by its confusion matrix. We use Lf(c|f) to denote
the confusion matrix entries for sensor s: i.e., the proba-
bility that an object of type ¢ will be classified as ¢ by
Sensor .

Now consider a joint feature whose state space
is parameterized by a state x = (¢,y), where ¢ is the
object type and y is the state of some other feature.
Similarly, we decompose a measurement z into its
classification ¢ and the measurement w provided by
a feature extractor attempting to measure y: i.e., z =
(c,w).

Equation (3.29) may be re-written

P%(c,w)

R%(c,w) = ,
H(s,i)ea Ps(cj,wy)
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where (3.24) is now
Pie,w) =) / POty
t

x [[eb.ydy.
s¢a

and P*(c{,w!) denotes P%(c,w) for the special case
a = {(s,i)}. To evaluate (5.2) we need to specify what
assumptions we are making about po, L?, and F3. Sec-
tion 5.1.1 describes the simplest case in which R® splits
into ¢ and w components. Section 5.1.2 describes a more
interesting case in which the distribution of a measure-
ment w depends not only on y, but on the object type ¢
as well.

11 B@»Licwi |y

(s,0)Ea

(5.2)

5.1.1. Independent Case
Suppose the following independence assumptions
for p® and L* are applicable,

P,y) = pOp° (), (5.3)

L¥(ci,w! | t,y) = L(c] | O (w! | y). (5.4)

(We are being somewhat cavalier here in the overloading
of the notation p® and L?, but trust that the meaning is
clear in context because of the symbols used in their
arguments.) Also suppose that A3 depends only on the
object type t:

B(t.y) = B3(1). (5.5)

(Generalizing this to, say, B3(t,y) = B3(t)R5(y) would
cause complications because Qf(t,y) would not enjoy
the same simple multiplicative form.) With these as-
sumptions, we find

R*(c,w) = R°*(0)R"*(w), (5.6)
where
K@= =0 g
H(s,i)eapcs(cf)
(5.7
PWa(w)
RWo, W=—o—
) H(s,i)Ea PWs(wy})
with

P => P’ [[ oL« [n]]es®  and
t (s,))ea s¢a

(5.8)

PV (w) = / P°o) [ Lo [y)dy, (5.9)
(s,)Ea

and with Pcs(cf) and PWS(wf) being the usual shorthand
for the o = {(s,i)} case. Also note that the object-type—
dependent detection probability leads to the following
form for the non-detection parameter g:

(5.1) a=>_ro]]eso. (5.10)
t seS
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In the absence of object-type data ¢, R°“(¢) simplifies
because L°(c{ | ) may be replaced by 1 in (5.8). When
there is, furthermore, no object-type component of state
t, R€“(c) simplifies further:

RCa — Hse& PDS Hseé& Qf) =q
Hse(i' (PDv Hs’#x Ql%)

where ¢ is simply the product of the Oy, over all s €S,
rather than (5.10).

The form (5.6) is quite convenient, as it allows one
to separate the computations dealing with the object-
type C data from that of the other feature W. However,
it is often the case that objects of different types will
have substantially different feature statistics. For exam-
ple, objects of one type #; may have a certain prior dis-
tribution p®(y | ¢,) on feature values as well has a certain
measurement likelihood function L*(w | y,t,), while ob-
jects of another type ¢, may not even have the feature
in question. In cases like this, we need a more accom-
modating approach.

1—|a]
>

(5.11)

5.1.2. Dependent Case

Instead of making assumptions (5.3) and (5.4), we
write this general decomposition of p® and L*, which
makes no assumptions—just manipulations of condi-
tional probabilities:

PP.y) =P’ 0p°(y | 1),
L*(ci,wi | t,y) = L°(c] | t,y)L*(W; | ci,t,y).
(5.13)

(5.12)

We now make two mild assumptions about (5.13) in
place of the radical assumption made in (5.4). First, we
assume that L*(c{ | t,y) does not depend on y. Although
the classifier behavior may in fact depend on the fea-
ture state y, we assume that this is a minor effect. This
is convenient because although one expects a confusion
matrix L°(c|7) to be provided with a classifier for a
given sensor configuration, one is unlikely to be pro-
vided with the dependence of the classifier on y. Sec-
ond, we assume that L*(w{ | ¢],t,y) does not depend on
c¢;. In other words, we assume that the true object type
suffices to determine how the measurement w; depends
on the feature state y, and that the called type yields little
additional information. With these assumptions, (5.13)
simplifies to

LS(c,w! | t,y) = LS(c! | DL (w! | 1,y).  (5.14)

Finally, as in (5.5) of Section 5.1.1 we assume that the
detection probability depends only on the object type:
B3(t,y) = B3(1).

Using (5.12), (5.14), and (5.5) we may simplify (5.2)
to a relatively simple sum over ¢,

Pe,w)=> p°0) [ BOL (] [n]][ob®P (w0,
t (s,)Ea s¢a

(5.15)

where

Powin = [ 3010 [ Lo |t
(s,)EQ

(5.16)

The formula (5.10) for ¢ also holds in this case. Thus
this object-type—dependent case requires one to evaluate
an analog of (5.9) for each object type t—namely (5.16).
The result of this is coupled with the classification data,
via (5.15), resulting in a calculation which is somewhat
more complicated than (5.8), but is nevertheless rather
straightforward, especially considering its much greater
generality and realism.

It remains to evaluate the integral in (5.16). In doing
so, we will first consider two general phenomena that
affect its evaluation. Section 5.2 will address the issue
that feature extraction is often a noisy procedure, and
propose a robust, general principle for coping with this.
Finally, Section 5.3 will describe how to cope with the
fact that features might be missing and/or assessed to
be missing.

5.2. Non-Informative Noise

Let us consider the object type ¢ in (5.16) fixed in
this section, and suppress it in the notation. This is
equivalent to considering (5.9) instead (suppressing the
W from the notation). Either interpretation yields

P = [p0) [] ot inay. G

(s,)Ea

A typical feature model one might use for L(w | y)
is a Gaussian. Such a model carries the risk of return-
ing incredibly tiny assessments of probability density
for a measurement w arising (e.g., 107190, 1071000 or
smaller) when it doesn’t match y well. In a realistic
situation, the probability density of a measurement w
could never be that small because there is always the
possibility of some glitch in the feature extraction rou-
tine. By allowing such tiny probability densities to oc-
cur in the model, one runs the risk of the feature ex-
tractor completely preventing a pair of tracks being as-
sociated even when the kinematic information is ex-
tremely favorable to association. Because one of the
chief fears in incorporating a feature extractor into an
association algorithm is that it might ruin kinematic-
only performance that is already fairly good, it is pru-
dent to account for the possibility of noise in the fea-
ture measurement model. (Note: one could make the
same argument to point out that the rapid decay of
Gaussians allows anomalous kinematic data to override
perfect feature matches, so one might include a noise
term in the kinematic association terms as well. This
would be a point worth considering when feature ex-
traction technology reaches the maturity of kinematic
tracking.)
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We regard a function as representing pure noise
when the distribution of measurements w it yields is
independent of the actual feature state y. One option
for a noise model is a uniform distribution of w over a
certain range. Although this seems simple, it introduces
an additional parameter (the width of the distribution)
and complicates the required integrals, while not nec-
essarily being a good model of noise. Instead, we pro-
mote the use of a non-informative model for noise. This
model sets the distribution of measurements due to noise
equal to the overall distribution of valid measurements.
It is called non-informative because a measurement w
provides no information as to whether it arose from
a valid measurement of some object or merely from
noise. Were one to know how noise differs statistically
from valid measurements, one could use this informa-
tion to flag certain measurements w as more likely to
have arisen from noise than others, and perhaps squeeze
even more performance out of an association algorithm,
but at the risk of algorithm robustness should the noise
behave differently than expected. In contrast, the non-
informative assumption provides a conservative, robust
baseline model for noise.

We use the non-informative assumption as follows.
Rather than developing a model for the measurement
likelihood function Lf(w|y) directly, we develop a
model Lj(w | y) for how we expect the measurement
w to be distributed given that (a) the true feature value
is y, and (b) the measurement is actually behaving ac-
cording to the model. We let aj, denote the probability
that the feature is obeying the model and express the
overall measurement likelihood function Lf(w | y) as

L'wl|y) =a,L,w|y)+ (1 —a)F(w), (5.18)

W

where Pf(w) is the distribution of w given that it arises
from noise. Note that there is no dependence on the true
state y in this case. We now define the following analog
of (5.17) for Ly:

Po(W) = / P’ [T Lo 9y, (5.19)

(s,0)ea

The special case a = {(s,i)} is particularly important
here. Thinking of w as representing w; here, we de-
fine

PS(w) = / POLW Yy, (5.20)

Equation (5.20) expresses the overall distribution
B} (w) of w values arising on sensor s when the features
are “obeying the model.” The non-informative noise
assumption is that the distribution in the noise case
P’(w) is identical to Bi(w):

B(w) = PX(w). (5.21)
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Using this, and substituting the expression in (5.18) for
Ls(w | y) into (5.17) yields

Powy= Y AMPYw) [ Piw)

o'Ca (s,)ea\a’
= > arEron II B
o/Cala/|>2 (s;)ea\a’
+C5 T B, (5.22)
(s,0)Ea
where
A =1]a [J-a) and ci= Y A
sea!  sea\d a/Cala’|<1
(5.23)

Equation (5.22) simplifies significantly in the two-
sensor case. Letting o = {(1,1),(2, )}, it reduces to

P(w) = a\ @ P (w) + (1 —a )P (whHP2(w?).
(5.24)

The formula (5.22) (or (5.24)) applies both to the
relatively simple case of Section 5.1.1, and the more
complicated case of Section 5.1.2. In the latter case,
it should be interpreted as a formula for P*(w | 1), the
dependence on object type ¢ having been suppressed.
In this case, one would use (5.19) to compute P (w )
from p®(y | t) and Ly (w | £,¥), and the parameters a;, may
(or may not) depend on ¢ as well. The resulting formulas
for P*(w | 1) for each r would then be used in (5.15) in
place of (5.16). In the two-sensor case, this amounts to
a fairly trivial modification.

Section 5.1.1 treats the case where the feature is
independent of object type. In this case, the result
may be expressed in terms of a quantity Rjj(w) which
represents what we would use if we ignored noise
modeling:

B (w)

H(s,i)ea Pux(wl\) ‘

The inclusion of noise modeling yields the following
forms for R*(w),

R%(w) = (5.25)

RY(w) = Z AGYRY (W) +CS, or

o'Cala’|>2

(5.26)
R*(W) = aya.R}(W) + (1 —a,a),

in the general and two-sensor cases, respectively. The

two-sensor formula has a pleasing interpretation as a

convex combination of the model value R} (W) and the

neutral value 1.

To use the non-informative noise model, then, one
takes the formula one has developed for P%(w|t) or
R“(w), renames it P (w | ) or R (W), respectively, then
uses the appropriate equation above ((5.22), (5.24), or
(5.26)) to incorporate the possibility that real-world
measurements may not obey one’s model. This is a nice
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form of modularity, which allows us to develop formu-
las without explicitly considering the effect of noise: it
can be incorporated with any model one develops. Sim-
ilarly, one may develop models for various object types
t and combine them using (5.15). Next we develop a
similarly modular capability for handling the possibility
of missing features.

5.3. Missing Features

In this subsection we consider the complication that
a feature may not be present on every object. If the fea-
ture extractor cannot handle this situation, but returns
some meaningless value when the feature is absent, one
can use the non-informative noise assumption of Sec-
tion 5.2. However, when the feature extractor exhibits
a distinctive behavior for objects that lack the feature,
then it is advantageous to exploit this information in
a way that the non-informative noise model does not.
Here we assume that either the designer of the feature
model has created a flag that indicates a belief that the
feature is absent, or that some post-processing of the
output produces such a flag. In either case, the perfor-
mance would undoubtedly be imperfect, and may be
characterized by a detection probability P/ (the prob-
ability of the feature being declared present on sensor
s when it is indeed present) and a false alarm proba-
bility F (the probability of the feature being declared
present when it is in fact missing). We use the lower
case d to distinguish the missing feature detection prob-
ability P/ here from the object detection probability
Bs.

We extend the state space for the feature to account
for the possibility of it being missing. If y denotes the
feature state, then we distinguish between two types
of values it can take: y,, which denotes a value for a
feature that exists, and @, which denotes that the feature
is missing. The prior p°(y) on the feature state may be
expressed as

0 Bpy,)  for y=y,
p Q)=
Or for y =20,

where F; is the prior probability of the feature existing,
Qp = 1 —P;, and pY(y,) is the prior distribution on y,
given that the feature exists.

We let wi denote the feature measurement on sensor
s. Like the feature state, the measurement can take two
types of values: a proper value wy,, or a call from the
feature extractor on sensor s that it is missing, 0°. To
express the measurement likelihood function L*(w! | y)
now requires four cases:

L(wy; | ye) = FLawy; | y,)s
LS(W;n' |0) = Pf;l‘ia(wj)i)’

(5.27)

(5.28)

L@ |y,) = 0,

o ' (5.29)
L0 |0) = 0},

where Q3 = 1 — P}, O, = 1 — B, Ly(w, | y,) is the mea-
surement likelihood function given that the feature ex-
ists and measurement is proper, and L, (w,) is the mea-
surement likelihood function given that the feature does
not exist but the measurement is proper. These formulas
are somewhat different from those in [11], where it is
assumed that a “false alarm” can occur even in the case
where the feature exists.

We now evaluate the integral in (5.9), suppressing

the superscript W:

Pin = [ 100 [] Lo ay. (530

(s,0)Ea

Let a, denote the subset of (s,i) € a for which w!
is a proper measurement, and «, denote the subset
for which w{ = 0°. We make a number of definitions
similar to those of Section 5.2 for non-informative
noise. Analogously to (5.19) we define

P (w) = / P20 T Liowsi [y)dy, (5.31)
(s,h)eay,

to be the version of P“(w) one would use when not
considering the possibility of missing features. Thinking
of w as representing wj, we write the special case
a = {(s,0)} of (5.31) as

Piw) = / ROILYw |y )dy,.  (532)

We employ the non-informative noise assumption to
model L;a(w;i):

L%Ya(WZi) = fﬁY(W;i)-

With the above definitions, we may re-write (5.30) as

(5.33)

prow =k | I & [ @i |&"™
(si)ea, (s,i)€ay
+0g H P H Ot H Fi(wp,).
(si)ea,  (si)Eap (s.)€qy
(5.34)

This section has described how to incorporate object-
type-dependence, noise, and missing features into the
evaluation of the feature component of association prob-
ability. Ultimately, regardless of what effects are in-
cluded, one must evaluate an integral of the form (5.30)
where the prior p°(y) and the measurement likelihood
function L°(w; | y) are appropriate to some specific fea-
ture. A Gaussian model for L*(w!|y) may be appro-
priate, in which case one can treat the feature in the
same way as one-dimensional kinematic data. A more
complex example is presented in Section 6, where an
angle-valued measurement has a von Mises error distri-
bution coupled with the possibility of being off by 180°.
The example shows explicitly how to evaluate (5.30) in
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this case, and then combine it with all three phenomena
in this section to produce association probabilities.

6. EXAMPLE

6.1. Sample Calculation

This section provides an example of the computation
of association probabilities in a complex scenario. It
has three sensors with unknown biases, object-type
classification data and object-type-dependent detection
probabilities, and finally, noisy and possibly missing
features whose distributions vary between object types.
We perform this sample calculation for the following
data set:

e Measurements:
yl =(1.5,3.7),
yi=(13.2,-11.2),

s=1: yi =(9.3,1.9),

s=2: y} =(-6.2,14.9),
y: = (3.0,4.5),

y; = (-3.6,6.9),

s=3: yi =(-16.8,-4.8),

-0.12 8.0
A
2.27 -2.0

y3 =(=7.3,—~11.1).

—20)
102 )°

e Error covariances:

1 W) <1.58
—0.12

y ( 5.8)
i 128 )°
134 -06 57.  —31.
s =2: = ‘/222 ,
06 40 ~31. 30.
322 —1.15
“\-115 176 )’
132 052 13.6 10.7
S=3: = ‘/23: .
107 9.3

0.52 0.94
e Called types:

s=1: c| = a, =4, c} =,
s=2: c%=0, c%=0, c§=l,
s=3: =6, a=»
o Feature measurements:
s=1: w{ =0, wé =5.5771, w; = 6.2067,
s=2: w; =4.9773, =49101, =6.2011,
s=3: w; =5.1253,  w; =3.0885.

The data set is visualized in Fig. 1. The measurements
are labeled from left to right on each sensor. The kine-
matic error covariances are represented by 90% contain-
ment ellipses. The called object types for the classifiers
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20

Sensor 1

20 20

Sensor 3
-20"
Fig. 1. Measurements and error covariances, with ellipses denoting

90% containment regions, symbols denoting object-type calls, and
line segments denoting measured feature values (angles).

are the symbols used for plotting them. The feature mea-
surements are angles ranging from 0 to 2w, represented
by a small line segment, or the special value @* denoting
a missing feature call by sensor s.

There are 778 possible associations for n = (3,3,2).
To speak meaningfully of the probabilities of these
associations given the data, one must make assumptions
about the data generation process. Here, we make the
following assumptions:

e Log-diffuse prior on number of objects (cf. Sec-
tion B.1)
e Covariance of prior kinematic distribution:

Vo = < 8 —9>
-9 11
o Diffuse bias priors for all sensors
e Four object types (m, 4, A, and V) with statistics given
in Tables I and II

e An object-type—dependent angular feature with statis-
tics described below

The four ground-truth object types listed above may
be thought of as the possible shapes of an object. The
Bayesian methodology requires a prior distribution p°(f)
on these types, which is given in Table I. Some object
types may be easier to detect on a given sensor than
others. Table I also gives the detection probability for
each type on each sensor.

Although the prior probability is much larger for
t = ¥ than for other object types (p°(¥) = 0.55), (C.7)
implies that the expected number n,(¢) of each object
type t detected on at least one sensor is roughly equal
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TABLE I
Prior and Detection Probabilities for Object Types

P (t) True type t
I ¢ A v
True type t » 1109 (08 (09503
m| ¢ [alv 2 2/08 [099]0.7 [09
p°(t) [ 0.1]0.15]0.2 | 0.55 @ 304 |08 09 |0.99
TABLE I1
Confusion Matrices for Each Sensor
L\ (clt) Called type ¢
O & A \ @
~ W [0.75]0.01]0.03|0.01]0.2
9:% ¢ [0.04]0062]0.02]0.07]0.25
é A [0.03]0.01]0.74]0.02 0.2
E v [0.07]0.08]0.05[05 |03
L2(clt) Called type ¢ L3(clt) Called type ¢
| ¢ | A |V | ¢ »
~ W08 |01 [0.05]0.05 ~ W 0.950.020.03
= ¢ [0.08]0.75]0.12]0.05 = ¢ |0.01]0.96]003
§ A [002/0.15]06 [0.23 ; A [0.02]0.01]0.97
= v |0.01]0.01]0.03]0.95 5w | 0.04]0.01]0.95

across types:

E[n,(m) | n] =0.765169, E[np(a) | n] = 0.795727,

E[n,(4) |n] = 0.763363, El[n,(v) | n] = 0.849989.

The measurement likelihood functions L*(c | t) for
each sensor are given by the confusion matrices in
Table II. In a real application, such values would be
the result of training a classifier. Although the set of
possible called types for a classifier is often identi-
cal to the set of ground truth types, only the sensor
2 classifier operates this way in the example. Sensor
1 has an additional called type e representing “un-
known,” whereas Sensor 3 cannot distinguish between
A and Vv, so it issues a call » which represents either
one.

We now specify phenomenologically rich feature
distributions for each of the object types above. First, we
assume that the feature may be missing, and let F;(f) be
the prior probability that a proper, ground-truth feature
value exists for an object of type ¢. The values of Fy(7)
are given in Table III. Assuming a proper value y, does
exist, we assume it to be a uniformly distributed angular
quantity: i.e., p2(y, | 1) = 1/27.

EXACT ASSOCIATION PROBABILITY FOR DATA WITH BIAS AND FEATURES

The measurement likelihood function for object type
t on sensor s is governed by five quantities: aft(t), P(0),
E (@), Pfump(t)’ o*(t). These are given in Table III. As
in Section 5.2, aj (1) represents the probability that the
measurement w obeys the model described by the rest
of the measurement likelihood function. The probabil-
ities PJ(¢) and F)(¢) are the detection and false alarm
probabilities for the decision problem of declaring a
proper feature value or missing, as described in Sec-
tion 5.3. Finally, we specify an underlying model for
the non-noise, detection case based on the parame-
ters pj‘ump(t) and ¢°(¢). The jump probability pjsump(t)
is the probability that an additional = has been erro-
neously added to the feature measurement. The pseudo-
standard—deviation ¢°(¢) is an analog to the standard
deviation of a Gaussian in the case of a feature whose
domain is the entire real line. The angular analog of a
Gaussian is the Von Mises distribution [1]:

emcos(é‘—/z,)

MO k) = PR

(6.1)

where I, is the modified Bessel function of order 0. The
k in (6.1) is analogous to an inverse variance. Thus the
distribution of a feature value w (before introducing the
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TABLE III
Prior and Detection Probabilities for Object Types

True type t
[ | ¢ A \4

Ps(t) [ 0.9]0.95 | 0.7 | 0.99
: True type t
Fy(t)

H | ¢ A v
» 1(0.94]0.940.96 | 0.83
2 210.990.990.98|0.97
% 306 [0.92]0.93]|0.997
r True type t
pjump(t) | ’ A v
" 0.01]0.08 |0 0.5
2 0.020.15/0 |05
» 0.06 | 0.05 | 0.03 | 0.5

additional effects of jump, missing features, and noise),
is M(w;y,o*(t)2).

The probability distribution is now fully specified,
giving sufficient information to compute the probabil-
ity of each possible association. In order to do so, we
will use the following identity for the Von Mises distri-
bution:

1 2 T o
E/o :Sl:[l./\/l(e,,u,lﬁ)da
) szlo(/a).
s=1

A
(6.2)

We now compute the probability of one of the most
plausible of the 778 possible associations, namely:

lal = {(1,1,1),(2,2,0),(3,3,2)}
(which is shorthand for [a] = {{(1,1),(2,1),(3,1)},

> kT expin’)
s=1

. True type t
a,(t)
[ ] ¢ A  J
@ 0.99 | 0.998 | 0.8 0.99
2 0.8 [0.999]0.9 | 1-10°
s 0.990.99 [0.95[1—10"10
5 True type t
Ta(t)
& $ A v
@ 110.02 |0.040.030.002
£ 21005 [0.1 |0.06]0.02
% 310.0011]0.01]0.02]0.3
_ True type t
i} & A  J
» 1{0.1 |0.230.05|0.02
2 2(0.07[02 [0.150.05
» 3/0.05/0.3 |0.08]0.03

W ( 0.36425
@32 7\ _0.08525

and, writing column vectors in rows for convenience,

—0.08525)
0.33942 )’

main = (—4.87067,3.663006),
Mng = (1.62393,—-1.04784),
M3, = (3.09849,—1.43294).
These are then used to compute ~, from (4.10) for each
o € [a]:
/{(1’1’]) = —874344,
R0 = —0.2445,
Kasn) = —23.8285.

The values of W and m,, above are also used to compute
H, W*, h, and b* :

{(1,2),(2,2)},{(1,3),(2,3),(3,2)}). We begin by evalu- 20.519 —23.979
ating the quantities in (4.17): = 223979 28.650 )
W= ( 0.32753 —0-08142) 0.56727  0.05332  —0.18105 —0.20300
(1,1,1) — ’
—0.08142  0.33302 0.05332 048860 —0.10474 —0.20623
W ( 2.78935 —2.85439) T | —0.18105 —0.10474 034568  0.08847
@207\ 285439 3.67734 )’ ~0.20300 —0.20623 0.08847  0.63862
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h =(-0.14826,1.18228),

b* = (—5.5339,—0.04816,—1.2648,-6.9713).

From these we have |W*||H|=0.473943, and b7
-W*=b* + hTH='h = 247.8660, so (4.20) yields x([a])
= —248.613. Combining this in (4.8) with the values of
k, we have

GX (X [a)]) = Cexp <—% (/{([a]) + Z /ﬁ(}))

a€lal

=1.58147 x 1078C.

In addition to GX(zX,[a]) there are two other con-
tributions to the association probability in (3.25). We
compute g([a]) from (B.10). This requires the probabil-
ity ¢ that an object is undetected on all sensors, which
is given by (5.10):

q=>_pP"O[2b®) =0.001945 (exactly).

seS

Therefore g([a]) = (2!/7!)0.998055° = 0.000392981.

Finally, we compute the joint object-type—feature
component G’(z’,[a]), which is somewhat involved.
Fortunately, (3.28) and (3.29) reduce this calculation
to the computation of P’?(z’) for each o, and there
are only 47 possible sets a (compared to 778 asso-
ciations). Because the feature distributions and detec-
tion probabilities are object-type—dependent, for any
a, P/%(z’) is given by P%(c,w) in (5.15) (the J be-
ing suppressed, and z’ expanded into (c,w)). This, in
turn, requires the computation of P*(w | ) in (5.16) for
each object type . We will compute P*(w | ) explic-
itly for one of the sets « in our example [a], namely
a=(3,3,2) ={(1,3),(2,3),(3,2)}. To do so, we suc-
cessively break down the computation in order to ac-
count for various phenomena—in each case expressing
P(w | 1) in terms of some simpler version of P*(w | 1)
which does not include the phenomenon. Specifically,
we do this for noise, then missing features, then the
jump by 7.

The first phenomenon to account for is noise, so
we evaluate P%(w) using (5.22), suppressing the depen-
dence on ¢ in the notation for brevity. This requires
that we compute Pu“"(w) for all eight subsets o' C a,
where o' represents a hypothesis about which mea-
surements in « arise from the model (as opposed to
noise). To compute each P/j”/(w), we turn to (5.34) to
handle missing features. In this case, o), = o for any
o' C a because w! is proper (i.e., non-missing) for each
(s,i) € a: w} =6.2067, w3 = 6.2011, and w3 = 3.0885.
This, in turn, requires us to evaluate Pd‘*'(w), accounting
the the jump phenomenon. Unlike noise and missing
features, we do not have a general equation to account
for the possible jump by =, as it is a rather specific
phenomenon. Therefore we adapt (5.17) to this specific
case, providing a general formula for P“(w) (which we

then use to evaluate Pd“/(w)):

P(w) = / P°O) [ @ L 055 [ 3) + Pl L w5 = 7 | 3))dly

(s,))Ea

= Z H ij“mP H qjyumpPAfIl(Wﬂl)-

o/ Ca(si)ea’ (s,)ea\a’

(6.3)

Here o’ represents a hypothesis about which measure-
ments in o have experienced a jump by 7, and w* is
the same as w, but with 7 subtracted from each w; for
which (s,7) € o/. Finally, we must compute the P (w) in

(6.3). This is given by (6.2).
) / [T 27t
(s,))Ea

(6.4)

Now, we may begin the numerical computation of
the original P®(w|#) (including all phenomena) for
a=(3,3,2) ={(1,3),(2,3),3,2)}.

1,(]0.17252067 4 0,07 2020111 4 .05 2308851 ))
(271')310(0.1_2)10(0.07—2)10(0.05_2)

=8.87511 x 107264,

> (@) 2expin)

(s,)Ea

Pi(w) =1, <

By(w|m) =

Naturally, this value is tiny because w% =3.0885 is
many sigmas away from wé and wg. However, when we
evaluate (6.3), we sum over cases where w is subtracted
from w; for some subset o/ of a. This will produce a
large value for the subset o/ = {(3,2)}:

PS(w | m)

Io(lo 1 —266,2()671' + 0'07—2662()1 1i + 0.05*26(3A0885*7T)i|)
N (27m)31,(0.1-2)1,(0.07-2)1,(0.05-2)

=2.55152.

Naturally, the same value is produced for o/ = {(1,3),
(2,3)}, but all other o/ C o produce negligible values.
Therefore (6.3) may be evaluated as

P(w|m)=0.99 x0.98 x 0.06 x 2.55152
+0.01 x 0.02 x 0.94 x 2.55152 + (tiny)
= 0.1490009.

Here we use the subscript d in anticipation of the next
step: incorporating the effects of missing features via
(5.34). This will require the value of P*(w|m) for
one-element sets a—this value is always equal to the
prior value 1/(27) for this specific feature. Referring
to Table III for the values of F;, Pj and F;, we obtain
the following probability density which accounts for the
possibility of the object lacking the feature (and all three

measurements in « arising as false alarms):
P(w|m)=0.9x0.94x0.99 x 0.6 x 0.149009

+0.1 x0.02 x 0.05 x 0.001 x (27) 3
= 0.0748806.
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Here we use the subscript p in anticipation of the final
step: incorporating noise. For this we need values of
P/f for all subsets o/ C «. Repeating the above steps for

each subset yields

PO (w |m) =0.0748806,  PO0(w|m) =1,
PO3D(w | W) =0.0289101,  PSOO(w|m) =0.134963,
PBOD(w | W) =0.0193784,  PO3O(w|m) =0.142603,
ff’w)(w | W) = 0.421703, [L(@’@’z>(w | m) = 0.0859596.
Therefore

P(w|m)=0.99 x 0.8 x 0.99 x 0.0748806
+ 0.8 X 0.99 x 0.01 x 0.0289101 x 0.134963 + - - -
+0.01 x 0.2 x0.01 x 1 x0.134963 x 0.142603
x 0.0859596 = 0.0595787.

Carrying out the above computation for each object
type t, we get

P (w|m) =0.0595787,
P(w | 4) =0.00999947,

P(w | A) =0.0221195,
P(w | V) =2.06241.

These are the quantities needed in (5.15) to compute
P%(c,w) for a =(3,3,2). Using the parameters in Ta-
bles I and II with the called types c} =, ¢3 = m, and
c3 = » we have

P%c,w)=0.1x09x0.8x0.4x0.2x0.8x0.03
x 0.0595787 + 0.15 x 0.8 x 0.99 x 0.8 x 0.25
% 0.08 x 0.03 x 0.00999947 + 0.2 x 0.95 x 0.7
x 0.9 x0.2 x0.02 x0.97 x 0.0221195 + 0.55
x 0.3 x0.9x0.99 x 0.3 x0.01 x0.95 x2.06241
=0.000883213.

This value is the largest among three-measurement
sets a, and the eighth-largest overall. The three largest
values are P@22(c,w) = 0.00598235, P32 (c,w) =
0.00281482, and PG-39(¢,w) = 0.00241721. After com-
puting P“(c,w) for all 47 sets o, we may use (3.29) to
get R/%(z’) for each a, and then multiply them in (3.28)
to get G’(z’,[a]). For [a] = {(1,1,1),(2,2,0),(3,3,2)}
this yields

G’ (7' ,[a]) = 107662. x 4673.65 x 548368.
=2.75925 x 10™,
Therefore (3.25) reduces to
Pr([a] | z) = 0.000392981 x 1.58147 x 1078C
x 2.75925 x 10" Pr([a,] | 2)
= 1.71484 x 10¥C,,
where C; = C Pr([q] | 2).
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TABLE IV
The Five Most Probable Associations

Association Probability
{(1,1,0),(2,2,1),(3,3,2)} 0.452373
{(1,2,0),(2,1,1),(3,3,2)} 0.226248
{(1,1,1),(2,2,0),(3,3,2)} 0.137136

{0,2,0),(1,0,0),(2,1,1),(3,3,2)} 0.0765394
{0,1,1),(1,0,0),(2,2,0),(3,3,2)} 0.0375843

After performing the above computation for all as-
sociations, we may determine the value of the normal-
ization coefficient C, to find that Pr([a] | z) = 0.137136,
which makes it the third most probable association of
the 778. The most probable associations are shown in
Table IV.

6.2. Simulation

The example above indicates that calculating asso-
ciation probability can be rather involved when one is
incorporating many phenomena. The presence of bias in
the kinematic component of the data introduces a term
x([a]) in the kinematic cost that depends on the asso-
ciation [a] as a whole, preventing integer programming
algorithms from finding optimal associations easily. The
costs for the non-kinematic component of the data may
be decomposed into the costs of individual sets « € [a].
In this case, however, there is a different kind of com-
plication. The measurement likelihood function for the
feature must be designed for specific feature of interest.
In the example above, the feature exhibits a number of
complicating phenomena (dependence on object type,
missing values, noise, and the possibility of jumping by
180°). There is a valid concern that errors may exist
in the derivation, transcription, and/or coding of such
complicated formulas.

However, the probabilities produced, such as those
in Table IV, have a precise meaning and are calculated
exactly. As such, they enable a powerful check. For ex-
ample, if we were able to collect independent events
with probabilities of exactly 23%, they must obey pre-
cisely the same statistical law as flipping a coin whose
probability of heads is 23%. To test the probabilities in
the example of Section 6.1, we make 100,000 runs in
which the data is generated according to the procedure
specified by the given parameters, then compute the as-
sociation probabilities and note, in each run, which asso-
ciation was correct. To do this, we require a method for
generating error covariance matrices V;*. This is done
as follows. First, a matrix is drawn from the Wishart
distribution W(Vy, /mg.,,,mg.,), then the result is scaled
by a factor ¢* where { ~ N(0,logy,,). This process is
carried out independently for each V°. The parameters
used in this procedure are

e Wishart parameters for error covariances: méen =10,
2 — 3 _
Mo, = 10, my,, = 10
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e Baseline error covariances:

L /51
e =y )
6 -3
2 _
Vge“_<—3 4)’
3

y _(7 5>
gen\5 4

: Y 2
e Scale factors for error covariances: Yoo, = 2, Ygen = 3
3
Vgen =4

There are some subtleties to the simulation process
due to the diffuse nature of the priors employed, and
to the requirement of not leaving extraneous signatures
in the data. There are three places where diffuse priors
occur: in the number of objects n; in &, the center of the
region of objects; and in the bias 3° of some sensors.
Appendix C shows how to simulate data efficiently with
a specified number of tracks n® on each sensor, even
when the prior p° is diffuse. To circumvent directly
sampling from diffuse priors for £ and 3°, we impose
the convention that scenes from sensors with diffuse
bias priors are pre-processed to have a centroid of
zero, and that all the other scenes are pre-processed
jointly to have a centroid of zero. This renders the
choices of £ and of ° for those sensors s with diffuse
priors irrelevant because they leave no trace in the
data.

One hundred thousand runs were made for this
scenario, each run producing probabilities for each of
the 778 possible associations. These associations were
grouped into bins: those with probability less than
0.0001, those with probability between 0.0001 and
0.001, etc. For example, there were 452,911 associa-
tions with probability between 0.001 and 0.01. Of these,
1453 were correct associations, i.e., 0.32081%. This is
certainly consistent—it lies between 0.1% and 1%—
but we will demonstrate a far more stringent valida-
tion.

One may consider the 77,800,000 association events
as independent flips of biased coins with various prob-
abilities p; of coming up heads (meaning “correct as-
sociation”). (Technically the events are not completely
independent but only very nearly so: two events picked
at random have a 1-in-a-100,000 chance of coming from
the same run, and hence exhibiting dependence.) We
may consider either the entire data set of flips, or any
subsets we like provided they are chosen without refer-
ence to ground truth. The law of large numbers says
that the number of heads in any such data set will
asymptotically approach a Gaussian distribution whose
mean equals the sum of p; over the events i, and whose
variance equals the sum of p;(1 — p;). Therefore, letting
“tot” denote the total number of associations in a data set
and “#” denote the number of these which are correct,

we have

tot

1

E(#/tot) = - ; p  and

(6.5)
1

U(#/tot) = ﬁ

We may now make a much more incisive observa-
tion about 0.32081% than the fact that it lies between
0.1% and 1%. We find that E(#/tot) = 0.32728%, and
o(#/tot) = 0.00848%. Thus, not only is 0.32081% be-
tween 0.1% and 1%, and not only is it close to the
expected value 0.32728%, but it is precisely 0.76 stan-
dard deviations below the expected value. Furthermore,
the large number of trials ensures that the distribution
is approximately Gaussian, so we can convert the score
¢ = —0.76 into the statement that the number of cor-
rect associations lies at the 22nd percentile: i.e., it is a
perfectly typical event.

Table V gives similar results for all probability bins.
The first two columns specify the range of computed
association probabilities in the bin. The third column
gives the total number of associations (out of 77.8 mil-
lion) with computed probabilities in the range of the bin.
Column four gives the number of associations in the
probability bin which are correct (and therefore sums
to 100,000), and column five gives the fraction which
are correct (column four divided by column three). The
sixth and seventh columns give the expected value and
standard deviation of the value in column five based on
(6.5). Column eight gives the number of standard devi-
ations which column five is above or below its expected
value (i.e., ¢ = (#/tot — E(#/tot)) /o (#/tot)). Finally, col-
umn nine converts column eight into the corresponding
percentile of a Gaussian distribution.

The results in Table V verify the association proba-
bility formulas given in this paper in the scenario of Sec-
tion 6.1. The most anomalous result is that only 99.42%
of the associations with probability in the range 99% to
99.9% are correct, compared to an expected value of
99.53%, but this is only a 2.2 sigma event: still quite
typical. Similar results hold for events other than com-
plete associations. An event of great interest, for exam-
ple, is whether the association deemed most probable is
correct. As shown in Table VI, this occurs 82.8% of the
time.

It is notable that both small and large probabili-
ties are reliable—there is no failure in any probability
range. Similar results are presented in [10] for a simpler,
but denser, scenario (two sensors, kinematic-only data).
There, a comparison is made between the exact bias in-
tegration formula presented in Section 4 and a method,
currently considered state-of-the-art, in which the single
most likely bias is selected and removed for each associ-
ation hypothesis. Although the latter method performed
reasonably accurately (17.6%, compared to 23.1% for
the exact method) the probabilities it produced were off
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TABLE V
Truth Versus Correctly Computed Probabilities for Various Probability Ranges

Prnin Prnax tot # #/tot E#/tot) o(#/tot) ¢ %
0 0.0001 75,986,700 85 0.0000011 0.0000010 0.0000001 0.65 0.74
0.0001 0.001 1,043,478 350 0.0003354 0.0003407 0.0000181 -0.29 0.39
0.001 0.01 452,911 1,453 0.0032081 0.0032728 0.0000848 -0.76 0.22
0.01 0.02 70,545 991 0.0140478 0.0141537 0.0004446 —-0.24 0.41
0.02 0.05 64,167 2,020 0.0314804 0.0318053 0.0006919 -0.47 0.32
0.05 0.1 34,618 2,383 0.068837 0.0708085 0.0013765 —1.43 0.08
0.1 0.2 27,279 3,907 0.143224 0.143045 0.002113 0.08 0.53
0.2 0.3 14,298 3,579 0.250315 0.245706 0.003592 1.28 0.90
0.3 0.4 9,497 3,249 0.342108 0.347989 0.004879 —1.21 0.11
0.4 0.5 7,774 3,522 0.453049 0.448765 0.005631 0.76 0.78
0.5 0.6 6,804 3,753 0.551587 0.549095 0.006022 0.41 0.66
0.6 0.7 6,557 4,234 0.645722 0.650153 0.005879 -0.75 0.23
0.7 0.8 7,618 5,747 0.754397 0.751855 0.004937 0.51 0.70
0.8 0.9 11,162 9,602 0.860240 0.855228 0.003319 1.51 0.93
0.9 0.99 35,018 33,669 0.961477 0.960444 0.001033 1.00 0.84
0.99 0.999 20,013 19,897 0.994204 0.995258 0.000485 —-2.17 0.01
0.999 1 1,561 1,559 0.998719 0.999301 0.000669 —0.87 0.19

TABLE VI verifiable (in the sense of Section 6.2) within such a

MAP Performance for Correctly Computed Probabilities

tot # #tot  E#/tor)  o#/tor) ¢ %

100000 82805 0.828050 0.826473 0.000996 1.58 0.94

by up to several hundred standard deviations, and were
particularly inaccurate for events at the high- and low-
probability extremes.

7. CONCLUSION

This paper espouses a Bayesian methodology for
developing association probability formulas to use as
a basis for developing high-quality, robust association
algorithms. Section 2 derives a general formula for as-
sociation probability given data from multiple sensors
with uncorrelated errors at some fixed time. Sections 4
and 5 provide specific formulas for biased kinematic
data and various kinds of non-kinematic data, respec-
tively. A hallmark of the Bayesian approach is that the
probabilities produced can be rigorously verified by the
method introduced in Section 6.2.

One may argue that although the probabilities pro-
duced by a Bayesian method may be quite accurate in
the scenario for which they are designed, real data will
surely fail to conform to the underlying model and input
parameters, so the assumption that Bayesian algorithms
are superior to simpler non-Bayesian ones is unjustified
for real data. This is not actually an argument for or
against Bayesian algorithms, however—it merely makes
the valid point that the true measure of the quality of an
algorithm or a formula is its performance on real data.
An ideal testbed would subject algorithms to the same
range of phenomena that domain experts believe to oc-
cur in real data, presenting such a variety of scenarios
that over-fitting is impossible. If an algorithm is able
to produce association probabilities that are rigorously
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testbed, then when it outputs a result such as “the prob-
ability that these two measurements arose from the same
object is 75%,” this has a clear and useful meaning: of
all possible states of the world which could give rise
to the data we have observed, the measurements arise
from the same object in three out of four of them.

To achieve such a reliable algorithm it is necessary
to develop an accurate simulation capability, then to
develop an association probability formula which ex-
ploits the domain expertise captured in the simulation to
achieve accurate probability calculations. Only though a
methodology for developing formulas which produces
verifiably meaningful probabilities in simpler cases can
one hope to achieve the goal of producing meaningful
probabilities in the more realistic and complex cases.
This paper supplies a general approach for developing
such formulas, as well as results for certain specific
cases.
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APPENDIX A.  INCORPORATING FALSE ALARMS

The derivation in Section 2 assumes that none of
the measurements are false alarms. The incorporation
of false alarms affects only the combinatorial factor
g([a]) in (2.12), however. Therefore the simpler, non-
false-alarm case is used in the body of this paper. All
results may be extended to include false alarms by using
the modified value of g([a]) presented in this appendix.

When false alarms are present, the size nj, of J;
(the set of objects detected on sensor s) may fall short
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of n* (the number of measurements on sensor s). Let
I, denote the set of false alarm measurements on
sensor s and nf, = |I,[, so that n) + nf,, = n*. The prior
probability that the number of false alarms on sensor
s is exactly ngp, is denoted pp,(ng,): this is assumed
to be a known property of sensor s. If a measurement
arises as a false alarm, the distribution of its (spurious)
value z7 given the systematic error 3° and center £ is
denoted L{, (2] | 5*,€). The analog of Lemma 2.1 in the
false-alarm case is the following.

LEMMA A.1 The probability density of the measurement
array 7° arising according to the mapping a® given the
object state array X, the systematic error [3°, and the
center £ of the prior region of state space is

Pr(z’,a" | x,3',£)
= npp!oia (i) [T Lia G | 5°.9)

i€l

H By ()L (2 | ;.80 T @b (x).

jEJ‘ JEIS
(A1)

PROOF Given the object state array X, the probabil-
ity Pr(n*,J;§ | x) that the subset of detected objects is Jj3
and the total number of measurements n* reflects an
additional ny, = n® —ny) false alarms is pp, (nf,) times
the product of Pg(xj) and Qf)(xj) over detected and
undetected objects j, respectively. Given JJ and
n’, there are n'!/nj,! equally likely mappings a’, so
Pr(a® | x) = Pr(n®,J;§ | X)nj;, ! /n*!. The probability density
of the measurement array z° given ¢’, x, °, and ¢ is
the product of the individual likelihood functions
Li(z} \xj,ﬂ“') for the detections i=a’(j) times the
product of L}, (zf|3%,€) for the false alarms. Equa-
tion (A.1) now follows from Pr(z*,a®|x,(3%¢) =
Pr(z° | a*,x, 5°,&) Pr(a’ | x).

Equation (A.1) is identical to (2.1) except that it has
a dependence on ¢ and an additional false-alarm-related
pre-factor. This pre-factor remains intact throughout the
derivation of association probability in Section 2, until
we arrive at this analog of (2.8):

Pr(z,[al'| B,) = nipopa (k) [ [ Lia 1 8°,6)

lEI
« 220D T pogg g,
H‘\“ES 'aE[aJ’

(A.2)

where the notation [a]’ denotes an incomplete associa-
tion—one for which not all measurements are included
in some cluster « € [a]’ (the remaining measurements
being false alarms). We may simplify (A.2) by prescrib-
ing a natural form for the false alarm likelihood function
Ly (Z | 8°,€). To do this, we first define the probability
p’ that an object is detected on sensor s and on no others

(without regard to what value it produced there):

- [l omseo T @b eod.
s'#£s
(Like g, p* is independent of ¢ when detection prob-
ability is independent of kinematic state.) We write
L3z | B°,€) = P(z | B%,€)/p° to denote the probability
density of an object producing the value zJ on sensor
s, given that it was detected by sensor s and no others,
where P*(z} | 5°,€) is given by (2.5) for the special case
a={(s,0)}.
The likelihood ratio

Araz [ 5°,6) =

(A.3)

Lin (@ | 5°,9)
Ly(z [ 5°,6)
gives the relative likelihood of the value z{ to arise from
a false alarm versus a single-sensor object detection.
Because the integrals of both its numerator and denom-
inator (over z7) are 1, if Ay, > 1 for some value of z}
(meaning z is more likely to be a false alarm), then it
must be less than 1 somewhere else. If one has a very
clear notion of the characteristics of measurements that
have arisen due to false alarms, it is appropriate to model
Ly, directly. Otherwise, it is prudent to model Ay, in-
stead, perhaps assigning it values larger than 1 for wild
values of z{, and somewhat less than 1 for more credible
values. The simplest, most robust model for Af, is that
it is identically 1. We call this the non-informative noise
assumption (cf. Section 5.2), because it stipulates that
we have no a priori knowledge of the false alarm be-
havior that allows us to distinguish between false alarms
and detections, even when we know the true values of
the systematic errors 3° and the center £ of the set of
objects. The non-informative noise assumption has the
additional benefit of simplifying the association equa-
tions.

If we make the non-informative noise assumption,
then the effect of false alarms can be encapsulated in a
factor v2, (15, ), defined by

(A.4)

YA (1fa) = nia 1 pia () (P*) " (A5)

Given this definition, Equation (A.2) may be expressed
more simply.

LEMMA A.2 Using the non-informative noise assump-
tion for false alarms, the probability density of the mea-
surement arrays 7 arising according to the incomplete
association [a]' given the systematic error [3°, and the
center £ of the prior region of state space is

’V(D)

Pr(z.[a]' | B.6) = HvFAmFA)H
SES

seS

][ Pzl 8.6,

! a€lal
(A.6)

where [a] represents the completion of the incomplete
association [a]’: i.e., [a] with clusters {(s,i)} adjoined
for each false alarm measurement.

PROOF Follows directly from (A.2)—(A.5).
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The incomplete association [a]’ distinguishes be-
tween objects detected on only one sensor and false
alarms. Its completion [a] does not, but this can be
quite useful in compressing the hypothesis space when
one cares only about which measurements to associate.
To obtain the probability of a completion [a], we sum
(A.6) over all [a]’ for which [a] is the completion. This
sum acts only on the combinatorial factors 72, (1) and
7%(np). To express this sum we need additional notation.
Let nf;, be the number of sets a € [a] with at least two
elements, and nj be the number of measurements on
sensor s which occur by themselves in [a]. We may
write np, in terms of ng), by noting that the number of
measurements on sensor s which arise from objects de-
tected once only is nj — ng,, so

np = |[al'] = nf + Z(ni — Nfa)-
s

(A7)

Summing (A.6) over all possible associations [a] yield-
ing the same [a] amounts to summing over all possible
number of false alarms on each sensor (i.e., nf, =0 to
n}) and accounting for all ways to choose the nf, false
alarms from n] measurements. Thus we introduce the
quantity

= 3030 ( fS o —n;A>)

nll:A:O np, =0 ses

() ).
seS FA

where n, = (nl,n},...,n}). The probability density
Pr(z,[a] | 3,€) may now be given by a formula identical
to (2.8), but with 1°(np,) replaced by v(n;,n,). Thus we
arrive at this analog of Theorem 2.4:

(A.8)

THEOREM A.3  When false alarms may occur, the prob-
ability of the association [a] given the measurements 7
is

Pr([a] | z) = g([a])G(z,[a]) Pr([ay] | z), (A.9)
where ( )
_ Y(ng,m,
MW—W@Ba (A.10)

and n denotes (n',n?,...,n").

PrROOF This follows from (A.6), and the definition
(A.8).

The significance of Theorem A.3 is that the effect
of false alarms is entirely encapsulated in the combina-
torial factor g([a]), which is independent of the mea-
surement data z. Although (A.10) is considerably more
complicated than (2.11), it can be evaluated explicitly
and stored, if desired, for any priors p° and pf,. More
typically, one simply assumes these priors to be Pois-
son: Section B.3 gives a simple formula for g([a]) in
this case.
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APPENDIX B. PRIOR ON THE NUMBER OF OBJECTS

The discussion preceding Equation (2.4) addresses
the violation of Bayesian methodology one makes when
estimating prior information from the data. This vi-
olation occurs when one makes the popular assump-
tion that the prior distribution of the number of objects
p°(n) is Poisson with the mean number of objects esti-
mated from the data. This issue is addressed here. Sec-
tion B.1 computes the combinatorial factor g([a]) for
several choices of prior p°(n). Section B.2 demonstrates
why the Poisson prior can work well in practice despite
its questionable validity. Finally, Section B.3 computes
g([a]) explicitly for the false alarm case, assuming Pois-
son priors.

B.1. The Combinatorial Factor

Poisson prior
For the Poisson prior

n

14
Py =e—, (B.1)
n!
(2.9) simplifies to
Vnp) = "Dy, (B.2)
and therefore (2.11) reduces to
g(la]) = v"™". (B.3)

For this prior, the association probability in the absence
of systematic errors (3.2) takes the following, purely
multiplicative form

Pr([a] | z) = Pr([ay] | 2) H ka(z), (B.4)
a€lal*
where N
Ro@) = — @ (B.5)

H(s,i)ea vPs(z})

This form is required for the traditional, efficient solu-
tion of the two-sensor association problem, because it
allows the cost of an association to be represented as a
sum of costs over each « € [a]™. In the two-sensor case,
one can organize these costs into a cost matrix, and find
the association with Maximal A Posteriori Probability
(the MAP association) [7] using efficient integer pro-
gramming techniques such as the JVC algorithm [13].
The Poisson prior is the only prior on n which yields this
purely multiplicative form [17, 18, 19], which makes it
quite convenient to use.

To use the Poisson prior, however, requires that
one estimate v from the data. For constant detection
probabilities A3, if one considers the probability of the
number of tracks on each sensor given v, then one gets
the following Maximum Likelihood Estimator of v:

nr
ZSES PDS

(B.6)

v =
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This, then, is a reasonable value of v to use with the
Poisson prior in practice.

A useful class of priors
For any nonnegative integer k and any A € [0, 1), the
following prior is well defined for n € Z:

(n k)

p’(n) = CI[n > k]——=\", (B.7)

where the indicator function I[n > k] is 1 when n >k
and O otherwise, and C is a normalizing constant. For
this prior, (2.11) reduces to

(np —k)!
(n; —k)!

in the limit A — 17, provided nj, > k. This prior has a
useful interpretation in the cases k =0 and k = 1.

g([al) = A=, (B.8)

Diffuse prior

The diffuse prior is obtained when k = 0. This prior
weights all possible number of objects equally, and one
might think this would be a reasonable, canonical choice
for a prior in the absence of information. In this case,
(B.8) is

np! n
g(lal) = 5 (1 —g)"r ™. (B.9)
ny!

This diffuse prior does not have the same claim to
impartiality as the diffuse spatial prior, however. The
spatial case has a compelling invariance with respect to

Euclidean transformations which has no analog here.

Log-diffuse prior

If one had to guess an integer in the absence of any
information, the guess 5 would be better than 74,936
because the latter is so specific. Rather than assuming
a uniform distribution for n, we assume a uniform
distribution for logn, in accordance with Benford’s law.
This yields the k = 1 case of (B.8):

_(np— D!
g(lal) = m(l —q

This is the form of g([a]) recommended for general
use when the computational issues favoring the Poisson
prior are not important.

)nran .

(B.10)

B.2. Justification of the Poisson prior

If we use the Poisson prior, then log(g([a]))
varies linearly with n;, (aside from a constant oft-
set): log(g([al)) = log(v)(np —ny). This is the behav-
ior that produces the purely multiplicative form (B.4)
for Pr([a] | z). An alternative, then, to using the Poisson
prior is to linearize log(g([a]) about some point nj}, for
a prior one believes is appropriate.

The slope of log(g([a]) for the Poisson prior is
constant,

d
—— log(g([a]) = log(v), (B.11)

dnyp,

whereas this slope for the general prior (B.7) is

d
log(g([al) = ¥(np + 1 —k) —log(l —g)
np

12—
~log (%) (B.12)

dn,,

where ¢ denotes the digamma function. Therefore the
Poisson prior may, in fact, be regarded as a linearization
of the general prior (B.7) about the point

np=N0—-qw+k—1/2. (B.13)

This is a quite reasonable place to linearize. If v is a
good estimate of the number of objects (such as the
MLE value v given by (B.6)), then (1 —¢g)v is a good
estimate of the number of detected objects nj,. The
offset by —1/2 or 1/2 in the cases k=0 or k=1,
respectively, is negligible.

Therefore, although using the Poisson prior with
some estimate of v based on the data violates Bayesian
methodology, it results in a formula that is fairly accu-
rate because it is a linearization of a justifiable diffuse
or log-diffuse prior on the number of objects. Because
it is an artificially tight distribution, however, it will un-
derestimate the probabilities of associations with a very
large or a very small numbers of detected objects n,,.

B.3. False Alarm Case

In contrast to p%(n), it is quite natural to assume
the number of false alarms on a sensor is Poisson
distributed. We let

v (VEA)”;A

PEa(Es) = € Fa ] (B.14)
FA®
For this prior, (A.5) simplifies to
B v N
Tealia) = € (%) . (B.15)

Even with this Poisson assumption, the value of
g([a]) does not simplify much unless we also assume
that p°(n) is Poisson distributed. If we accept (B.1) and
(B.14), however, then the complicated quantity v(nj;,n,)
in (A.8) simplifies to

Y(nfy,my) = exp (—u(l —q)— va;A>

seS
s v\
x b H (,, + %) ) (B.16)
seS
Using this, we may write (A.10) as
s nj—n*
g(la) = v [ <u + ”pﬁ> . (B.I7)

seS
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As in the case without false alarms, the Poisson
assumption results in the multiplicative form (B.4) for
association probability, but with (B.5) replaced by

vP%(z)

R%(z) =
[isiea <V +

(B.18)

N

VEA ) pPs (Z\ )
px 1

APPENDIX C.  SIMULATING A SPECIFIED NUMBER
OF MEASUREMENTS

It would seem that the first step in the simulation
of an association scenario would be to sample the
total number of objects n from the prior p°(n). In the
case of the diffuse and log-diffuse priors described
in Appendix B, this is problematic: these priors have
infinite mean. This difficulty may be overcome by fixing
n, the number of tracks observed on each sensor. Indeed,
it is more convenient to gather statistics from runs with
a constant value of n anyway, regardless of whether the
prior p® forces one’s hand. One could imagine using
a rejection method to sample in this way: i.e., one
could sample n from p°, then generate tracks on each
sensor in the usual way, but reject any scenario that
does not end up with n tracks on the sensors. This is
highly inefficient however. This appendix describes an
efficient procedure which is statistically equivalent to
the inefficient rejection method.

We begin with the probability of an object being
detected on some subset & of S and not on any other
Sensors:

Pi= [Palo]]mw][ehwdx  ©D
SEQ s¢a

It is assumed that this result is independent of £. In
particular, we are interested in two cases. First, when
B3(x) is independent of x we have

Pri=T[R]]2b-

s€a s¢a

(C2)

On the other hand, if A3 exhibits as dependence on
object type, as in Section 5.1.1 or 5.1.2, then

P =" o[ [Bo]]eho.

sea s¢a

(C.3)

which generalizes the formula for ¢ given in (5.10).
We define [a] to be the multiset of values of o for
the « € [a]. That is, if « = {(1,5),(3,2)} (i.e., according
to [a] some object produced measurement 5 on sen-
sor 1, measurement 2 on sensor 3, and no others), then
a = {1,3}. If there are exactly four « € [a] for which

Each [a] determines the number of tracks m on the
sensors, so we define [, ([a]) to be 1 if [a] is consistent
with n and O otherwise. The conditional probability
Pr([a] | n) is given by

1,([a]) Pr([a])
Par n(lal) Pr(lal’)”

This formula may be used to randomly generate [a]
given n. Then, given [a], one may choose a value of
[a] from the equally likely possibilities.

Having obtained a random association [a], one must
then sample a state for each a € [a], bearing in mind
the statistical influence of the fact that the object is
detected on the sensors & and no others. In the case
(C.2) of object-independent detection probabilities £,
there is no effect on the state: it may be sampled in
the usual fashion. In the case (C.3), where A depends
on the object type ¢, the object type must be sampled
more carefully, however. This requires accounting for
its dependence on «. To sample the object type ¢ for an
object detected on sensors s € & but no others, one must
draw from Pr(¢ | @) rather than p°(r), where

_ OO iea B3SO [1,es O3
PI‘(Z | Oé) — p ( )HAea D(_) HA%Q’ QD( )
P(Jn
— po(t) Hseapﬁ(f) Hseé& Qb(t)
>0 PP [ ea B [ Liga O

(C.6)
When detection probability is a function of object
type t, the distribution of object types on detected
objects may differ greatly from p°(#). When formulating
an association scenario, it is helpful to know how many
objects of each type to expect. The expected value of

np(t), the number of objects of type ¢ detected, for a
given value of n is

Elnp(t) ] = Pr(la] [m) Y Pr(t|@). (C.7)

[a] a€lal

Pr([a] | n) = (C.5)

When BS is independent of f, Pr(r|a)= p°(t), so
E[np(¢) | n] reduces to E[ny, | n]p°().

APPENDIX D. A CORRELATED GAUSSIAN PRODUCT
FORMULA

A standard formula for the product of k Gaussians
is

k k
[TV Gsm, V) = VR WIN 0, W) [ [V Oy 1.V,

i=1 i=1

D.1

a = {1,3}, then we write m({1,3}) = 4. This multiplic- where ®-1)

ity function m is part of the multiset [a]. After some . 1 }
manipulation, we find that o W= val and = WZV,’Imp

_ (P(I)m o _ —
Pr(laD) =~"(o) [] <o (C.4) = =

aelal ' (D.2)
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and therefore

k k
/HN(x;mi,V;)dx =/ [27W] H/\f(mi;,u,Vi).
i=1 i=1
(D.3)
Theorem 4.2 requires the evaluation of a product
of k Gaussians which is much more complicated than
(D.3). Let

k P
v=///HN ZAijxj;mi,Vi
i=1 j=1

dxydx,---dx,,

D.4)

where each x; € R", each m; € R™, each V, is a sym-
metric positive definite m x m matrix, and each A;; is
an m x n matrix. In evaluating (D.4) the product over i
becomes a sum over i within the argument of the Gaus-
sian, which leads to the requirement for computing the

following critical quantities:

k
U,=Y ALV 'A, for 1<j,j/<p, (D5)
i=1

for1<j<p and
(D.6)
D.7)

These may be used to express the integrand in (D.4) as
a quadratic form over R"?. We define

X1 U, U, - U

p
* Ui Up - Uy
X = , U= and
Xp Upl Up2 Upp
(D.8)
b,
b,
b= |,
b

so x and b are vectors in R"”, and U is an np x np sym-
metric positive semi-definite matrix. For a broad class
of matrices A;;, U is invertible and we may therefore
define p = U~'b. The integrand of (D.4) may now be
written

p
D_ApmpV; | =vNeep, U, (D9)

j=1

k
IV
i=1

provided |U| > 0, where

i=1

« —1/2
y = <exp(c ~b"U 'p)2m)™ U] | |Vi|> .

(D.10)

D.1 Gaussian Transformations

Theorem 4.3 requires certain formulas for manipu-
lating Gaussians. First, for any invertible np x np matrix
C, a simple algebraic manipulation shows that

Nx;p, U™ = [|CIV(Cx; Cp, (CTTUCTH T,
(D.11)

where ||C|| denotes the absolute value of the determinant
of C.

We now give a formula for integrating (D.9) over
X4 through x, only for any 0 <7<p. We let x; =
(x,,X,,...,x,) denote the free variables, and x; =
(Xr41>X;425---,X,) denote the variables of integration.
We may then decompose U and b into corresponding

blocks:
X=<XF>’ U=<UFF UFI> and b:(bF),
X, U, U, b,
(D.12)

where UL, = U, .. We define the following function of
Xp,

w, =U (b, — U pxp), (D.13)

as well as the Schur complement [12] of U, in U
(denoted Uy ), and related quantities:

Usp = Upp = Up U, Uy, (D.14)
b: =b, — U, U,'b,  and (D.15)
pp = Upg'bp. (D.16)

The Gaussian in (D.9) may now be written as

N, U = Nxps i, Up DN (x5 17, U,

(D.17)
whence

/ N p, U Ndx, = N(xp; i, Ust). (D.18)

The decomposition (D.12) gives an alternative formula
for v in which the following quantities in (D.10) are
expressed in an alternative fashion:

b"U~'b = b U};'b; + b Uj' b}
Ul = [Up| [Upp|-

and
(D.19)

These matrix identities may also be obtained directly
through the block matrix inversion formulas [12].
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